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Abstract. The Monster tower, also known as the Semple tower, is a sequence

of manifolds with distributions of interest to both differential and algebraic
geometers. Each manifold is a projective bundle over the previous. Moreover,

each level is a fiber compactified jet bundle equipped with an action of finite

jets of the diffeomorphism group. There is a correspondence between points in
the tower and curves in the base manifold. These points admit a stratification

which can be encoded by a word called the RVT code. Here, we derive the
spelling rules for these words in the case of a three dimensional base. That

is, we determine precisely which words are realized by points in the tower. To

this end, we study the incidence relations between certain subtowers, called
Baby Monsters, and present a general method for determining the level at

which each Baby Monster is born. Here, we focus on the case where the base

manifold is three dimensional, but all the methods presented generalize to bases
of arbitrary dimension.

1. Introduction.

1.1. Motivation. The Monster tower, also known as the Semple tower, lies in the
intersection of differential geometry, non-holonomic mechanics, singularity theory,
and algebraic geometry. Cartan ([2] studied the diffeomorphism group action on
jet spaces, which led to developments in the fields of Goursat distributions and
sub-Riemannian geometry. Jean [9], Luca and Risler [13], Li and Respondek [12],
Pelletier and Slayman [20, 21], and others have studied models of various kinematic
systems (a car pulling n trailers, motion of an articulated arm, n-bar systems).
Montgomery and Zhitomirskii [15] studied the relationship with curve singularities;
later, so did we [5, 24]. And we discovered in [7] that algebraic geometers have
long studied these objects under different names. We have begun pursuing these
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connections [6] and working with algebraic geometers to consolidate understanding
and improve existing terminology and techniques [4]. Here, we study the RVT code
for the tower, which is invariant under the action of the diffeomorphism group.
This is related to work on the classification problem studied by Mormul [16, 17, 18],
Montgomery and Zhitomirskii [14, 15], the authors [5], and others.

In the geometric theory of differential equations, we speculate that there may be
some interesting connections between the singularity theory of the Monster tower
and the general Monge problem for underdetermined systems of ordinary differential
equations with an arbitrary number of degrees of freedom. In [10], the authors derive
sufficient conditions, in terms of truncated multi-flag systems, for the existence of a
Monge-Cartan parametrization of the general solution of such systems in the regular
case. To our knowledge, no connection has been made with the singular theory
of multi-flags presented in this note. Similar undetermined systems of ordinary
differential equations are common in geometric control theory when studying flat
outputs of nonlinear control systems [22]. A detailed account of the geometry of
differential equations in jet spaces can be found in [11], where symmetry methods
from contact and symplectic geometry are used to solve non-trivial nonlinear partial
and ordinary differential equations.

It remains to investigate the correspondence between finite jets of spatial curves
and normal forms of special multi-flags. One should explore the depth of the corre-
spondence between Arnold’s A-D-E classification [1] and the listing of normal forms
of Goursat multi-flags.

Finally, current work with algebraic geometers [4] extends and generalizes the
results of this paper to the case of an n-dimensional base. An interesting open
question here concerns the existence of moduli in orbits of the action of the diffeo-
morphism group of the base space.

Thus, it is apparent that this object is of interest to a variety of pure and applied
mathematicians, and that it presents a wealth of interesting problems which have
potential to shed light in surprising areas.

1.2. History. The subject begins with the study of Goursat distributions, which
are bracket-generating (completely non-holonomic) but slow growing. Cartan [2]
studied the model of the canonical contact distribution on the jet space Jk(R,R).
All Goursat distributions were believed to be equivalent to Cartan’s under the action
of the diffeomorphism group until Giaro, Kumpera, and Ruiz discovered the first
singularity in 1978 [8].

Jean [9] studied the kinematic model of a car pulling N trailers, a system which
is locally universal for Goursat distributions of corank N + 1. He developed a
geometric stratification given by regions in the configuration space of the model in
terms of critical angles. Montgomery and Zhitomirskii [14] introduced the Monster
tower, a sequence of manifolds with distributions in which every Goursat germ
occurs, allowing for Jean’s strata to be recast in terms of positions of members of a
canonical subflag of the Goursat flag. Mormul [16] labelled the strata from [14] by
words in the letters GST, which became the RVT code in [15]. In [15], Montgomery
and Zhitomirskii showed that Goursat germs correspond to finite jets of Legendrian
curve germs, and that the RVT coding corresponds to several classical invariants in
the singularity theory of planar curves. They also gave complete spelling rules for
the RVT code in this case.

These studies were all concerned with the Monster tower whose base is R2. In
[7], we generalized this to towers with base Rn. We also discovered that this object
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Table 1. RVT Code Spelling Rules

Letter Can be followed by Cannot be followed by

R R, V Ti, Lj

V R, V, T1, L1 T2, L2, L3

T1 R, V, T1, L1 T2, L2, L3

T2 R, V, T2, L3 T1, L1, L2

L1 R, V, T1, T2, L1, L2, L3 ∅
L2 R, V, T1, T2, L1, L2, L3 ∅
L3 R, V, T1, T2, L1, L2, L3 ∅

was known to algebraic geometers as the Semple tower. We also began the effort
to generalize the RVT code, and find spelling rules to describe which words were
admissible (Theorem 1). That effort is completed here (Theorem 2). The methods
used in the present contribution were first developed in [5], in which we also classified
points in the first four levels of the tower. Here, we will complete the spelling rules
for base R3. Our techniques generalize to towers with base Rn.

1.3. Main results. The diffeomorphism group of R3 acts on the Monster tower,
and the RVT code is an invariant labeling of orbits. Note that the combinatorial
data in the RVT code forces a finite number of inequivalent classes at each level of
the tower, but there may be moduli within a given class (see [15]. In [7], we stated
the following incomplete spelling rules, which followed from [15].

Theorem 1 ([7]). In the Semple tower with base R3, every RVT code must begin
with R, and T1 cannot follow R.

Here, we add the missing rules, yielding the complete description of realizable
RVT codes. Our alphabet is the set {R, V, T1, T2, L1, L2, L3}. Note that these
seven letters correspond precisely to the seven possibilities found in Semple’s orig-
inal work [23]. We therefore have the following combinatorial description of the
diffeomorphism group orbits.

Theorem 2 (Spelling Rules). In the Semple tower with base R3, there exists at
point p with RVT code ω if and only if the word ω satisfies:

1. Every word must begin with R
2. R must be followed by R or V
3. V and T1 must be followed by R, V, T1, or L1

4. T2 must be followed by R, V, T2, or L3

5. L1, L2, and L3 can be followed by any letter.

For example, the word RV V RV T1L1T2L3L2 is admissible, but V T2T1RT2 breaks
rules (1)–(4). The following Table 1 summarizes this Theorem.

1.4. Outline. In Section 2, we give the requisite background material and refer-
ences. We define the Monster tower, Baby Monsters, and the RVT coding system.

In Section 3, we describe our main tool, the method of critical hyperplanes. We
begin our main example which will inform the rest of the paper. This example –
the code RV L1T2 – will lend itself to a model proof of one spelling rule, whose
technique can be repeated to obtain the remaining rules. Moreover, this example
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will serve to demonstrate the ease with which our results could be extended to
towers with bases Rn for n > 3. We choose this code to focus on because it neatly
demonstrates the general method as well as some of the subtleties which abound in
this work and thereby necessitate a delicate touch. In particular, the code RV L1

was studied extensively in [5], so we restate and build upon the work there. We
then amend the code by adding T2, which is somewhat exotic and interesting but
not overly complicated.

In Section 4, we restate our main theorem and attend to its proof. We focus
on one spelling rule, as the rest are proved in the same fashion, and the proofs are
tedious. The main proof proceeds by induction on the number of letters appearing
in the code which belong to the set S = {T2, L2, L3}.

2. Background.

2.1. The tower. The Monster/Semple tower is constructed through a series of
Cartan prolongations. Begin with a smooth d-dimensional manifold M0 and a rank
r distribution (subbundle of TM0) denoted ∆0. The first prolongation is the fiber
bundle

M1 =
⋃

p∈M0

P∆0
p,

whose elements have the form (p, l), where p is a point in M0 and l is a line in the
subspace ∆0

p. The distribution on M1 is given by

∆1
(p,l) = (dπ1

0)−1(l)

where π1
0 : M1 →M0 is the bundle projection. Note that M1 has dimension d+r−1,

and that ∆1 is a rank r distribution.
Iterating the prolongation procedure gives a sequence of manifolds

M i =
⋃

p∈Mi−1

P∆i−1
p .

Every point in M i has the form (p, l), where p is a point in M i−1 and l is a line
in the distribution ∆i−1

p . The dimension of M i is thus d + i(r − 1). The bundle

projection map πi
i−1 : M i → M i−1 has fibers diffeomorphic to P∆i−1

p
∼= RPr−1.

The rank r distribution on M i is given by

∆i
(p,l) = (dπi

i−1)−1(l).

The distributions ∆i are sometimes known as Goursat multi-flags.

Definition 1. The Monster or Semple tower is the sequence of projective bundles

· · · →M i →M i−1 → · · · →M1 →M0

equipped with the distribution ∆i at each level.

Of particular interest is the case of M0 = Rn and ∆0 = TRn. We refer to the
consequent tower as the Rn-tower or the tower with n-dimensional base. The tower
with base M0 = R2 and ∆0 = TR2 has been studied extensively [15]. Here, as in
[5], we focus on the case M0 = R3 and ∆0 = TR3. However, our methods generalize
to the Rn-tower for arbitrary n.

To be clear, in the remainder of this paper we are takingM0 = R3 and ∆0 = TR3.
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2.2. Regular, critical and vertical directions and points. By composing the
projection maps πk

k−1, π
k−1
k−2 , . . . , π

i+1
i we obtain projections πk

i : Mk →M i, i < k.

For pk ∈ Mk, we denote πk
i (pk) by pi. The horizontal curves at level i (tangent to

∆i) naturally prolong (i.e., lift) to horizontal curves at level k. However, the curves
coinciding with fibers of πi

i−1 are special – they project down to points and are not
prolongations of curves from below. They are called vertical and can themselves be
prolonged to (first order) tangency curves, then prolonged again to (second order)
tangency curves, and so on. Vertical curves and their prolongations are called
critical. If a curve is vertical or critical then we say its tangent directions are as
well.

Thus, at each level i ≥ 2 there are vertical directions, and, in addition, at each
level i ≥ 3 there are tangency directions different from the vertical direction. At
any level, all the remaining (non-critical) horizontal directions are called regular.
Finally, we call a point (p, l) ∈ M i regular, vertical, or critical if the direction of l
is.

2.3. Baby monsters and critical hyperplanes. Recall that one can apply the
prolongation procedure to any smooth manifold F in place of R3. In particular, we
will prolong the fibers F of the bundle projections πi

i−1, obtaining new subtowers
of the Monster tower. We call these subtowers Baby Monsters.

Let pi ∈ M i and consider the fiber Fi(pi) := (πi
i−1)−1(pi−1) ⊂ M i. This is an

integral submanifold for ∆i, so we can prolong the pair (Fi(pi), TFi(pi)). Denote

the jth prolongation of this pair by (F j
i (pi), δ

j
i ). Note that F j

i (pi) is a smooth
submanifold of M i+j , and

δji (q) = ∆i+j(q) ∩ TqF j
i (pi)

for q ∈ F j
i (pi).

Definition 2. We call the tower (F j
i (pi), δ

j
i ) a Baby Monster born at level i. For

q ∈ F j
i (pi), we call δji (q) a critical hyperplane.

Note that a Baby Monster is a subtower of the Monster tower, with dimF j
i (pi) =

2 + j and dim δji (q) = 2. While the terminology hyperplane comes from a more
general setting, here we will simply refer to critical planes.

2.4. KR coordinates. It is convenient to work in a canonical coordinate system,
called Kumpera-Ruiz or KR coordinates [8]. This is a generalization of jet coordi-
nates for jet spaces, but that takes into account the projective nature of the fibers.
These coordinates were described in detail for the R2-tower in [15] and for our cur-
rent case, the R3-tower, in [7]. We briefly summarize here for completeness, and
refer the interested reader to Section 4.2 of [7].

The KR coordinates for Mk are of the form (x, y, z, u1, v1, . . . uk, vk). They sat-
isfy:

1. The projection πk
i (x, y, z, u1, v1, . . . uk, vk) = (x, y, z, u1, v1, . . . ui, vi);

2. The coordinates uk, vk are affine coordinates for the fiber Fk;
3. There are 3k many charts covering Mk, corresponding to the three affine

charts needed to cover each Fi
∼= RP2 for 1 ≤ i ≤ k.

4. The projective fiber Fi+1 is coordinatized homogeneously by [dfi : dui : dvi],
where fi is some coordinate from a lower level. The covector dfi is called the
uniformizing coordinate in [5]. Dividing the entries in [dfi : dui : dvi] by one
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of the nonzero covectors yields local affine coordinates for the fiber Fi+1. By
convention, we always take ui+1 to be the first (left-most) affine coordinate.

To illustrate (4), consider the following two examples. If [dfi : dui : dvi] = [1 :
dui

dfi
: dvi

dfi
], then we take ui+1 = dui

dfi
and vi+1 = dvi

dfi
. Similarly, if [dfi : dui : dvi] =

[ dfidui
: 1 : dvi

dui
], then ui+1 = dfi

dui
and vi+1 = dvi

dui
. Detailed examples are worked

below.

2.5. RVT codes. We observed in [7] that there are only three critical planes within
each distribution ∆i. The tangent space to the fiber is called the vertical plane; the
other two arise as prolongations of vertical planes and are called tangency planes. In
the most general setting, a tangency hyperplane is any hyperplane with nontrivial
intersection with the vertical hyperplane. In our setting, we have the following
characterization.

Definition 3. Let q ∈M i.

1. The vertical plane V (q) is the critical plane δ0i (q) = TqFi(q). In KR coordi-

nates, V (q) = span{ ∂
∂ui

, ∂
∂vi
}. It is given projectively by [dfi : dui : dvi] = [0 :

a : b] for a, b ∈ R.
2. The plane T1(q) is the unique critical plane in ∆i which intersects span{ ∂

∂vi
}.

It is given projectively by [dfi : dui : dvi] = [a : 0 : b] for a, b ∈ R.
3. The plane T2(q) is the unique critical plane in ∆i which does not intersect

span{ ∂
∂vi
}. It is given projectively by [dfi : dui : dvi] = [a : b : 0] for a, b ∈ R.

4. The distinguished lines Lj(q) for j = 1, 2, 3 are given by:
(i) L1 = V ∩ T1
(ii) L2 = T1 ∩ T2

(iii) L3 = V ∩ T2
See Figure 1.

In this definition, we often drop the explicit dependence on q when the context
is clear. Also, in homogeneous coordinates, we cannot have a and b both zero, and
we will usually assume without loss of generality that a 6= 0. Finally, we clarify
the terminology. Here V (q) is a linear subspace of ∆i(q) ⊂ TqM

i. When working
in homogeneous coordinates, we are identifying this plane with PV (q) ⊂ P∆i(q) ⊂
M i+1. Similarly for the other planes and lines in this definition. Note again that
this definition has analogue in [23].

Now a point pi+1 = (pi, li) is assigned a letter from {R, V, T1, T2, L1, L2, L3}
according to whether li lies in one of the critical planes or distinguished lines given
in Definition 3. Here, the lines Lj take precedence, so li lying in L3 is assigned the
letter L3, even though it also lies in both V and T2. If li does not lie in any of these,
then it is regular (see above) and assigned the letter R. If li is assigned the letter
α, then we say that pi+1 is an α point. Note that in [7], the letters T2, L2, and L3

were unknown, and the notation was T = T1 and L = L1. All letters besides R are
called critical letters.

Definition 4. The RVT code of a point p ∈ Mk is a word ω = ω1ω2 . . . ωk in the
letters {R, V, T1, T2, L1, L2, L3}, where ωi = α if πk

i (p) is an α point.

Example 1. Suppose p3 ∈ M3 has RVT code ω = RV L1. This means that
p3 = (p2, l2) with l2 = L1(p2), and p2 = (p1, l1) with l1 ⊂ V (p1). Every direction in
∆1 is regular, so the leading letter R yields no information.
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L1

L2

L3

T1

T2

V

Figure 1. The three critical planes V, T1, and T2, and their inter-
sections, the distinguished lines L1, L2, and L3.

For convenience, sometimes we will also denote by ω the set of all points with
RVT code ω. For example, we may write p ∈ RV L1T2 to signify that p has RVT
code RV L1T2.

This coding provides a coarse stratification of points in the Monster/Semple
tower. Recall that finite jets of diffeomorphisms act on the tower. Points which lie
in the same orbit must have the same RVT code. However, there may exist multiple
orbits within the same RVT strata. For details, see [5] or [19].

3. The critical hyperplane method.

3.1. Configurations. This method relies on the non-trivial fact that certain crit-
ical planes appear over certain points, while others may not. In particular, there
are four possible configurations over a point p ∈ Mk; these are shown in Figure 2.
We will show how each configuration is possible only if p belongs to certain RVT
classes. Specifically, we have Table 2, which is effectively equivalent to Theorem 2.
Note that saying that p is an α point is the same as saying that α is the last letter
in the RVT code for p.

The remainder of this paper will be dedicated to explaining why these possibilities
are exhaustive.

3.2. The method. We now describe the explicit method from which we derive
all our results. This will be applied to specific examples shortly. The critical
hyperplane method was implicit in parts of [15], made explicit in [7], exploited for
the classification problem in [5], and is perfected here. This gives a blueprint for
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Table 2. Critical Hyperplane Configurations

Last letter in RVT code of p ∈Mk Critical planes appearing in ∆k(p)

R V

V or T1 V and T1

T2 V and T2

L1, L2, or L3 V, T1, and T2

Figure 2. Critical plane configurations that can appear in the
distribution above an R point (top left), a V or T1 point (top
right), a T2 point (bottom left), and an Lj point (bottom right).

characterizing all Baby Monsters and determining all spelling rules for the Rn tower
for any n.

Begin with an RVT code ω of a point p ∈ Mk. We wish to understand which
critical letters can be added to the end of the code (one can always trivially add
the letter R). In order to do so, we must understand which critical planes lie above
p. Since critical planes live within Baby Monsters, we must determine which Baby
Monsters are present, and for those which are, we seek to find the levels at which
they were born.

We first determine the local KR coordinate chart containing p. We can then
describe the distribution ∆k(p) in coordinates. We then choose a critical plane
V, T1, or T2, write it in coordinates as in Definition 3, and trace the coordinate
representations backwards, projecting down to lower levels of the tower, one at a
time.
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If at some level i we find that both fiber coordinates ui and vi are non-vanishing,
then our critical plane must arise as the prolongation of the vertical plane Vi. Our
critical plane therefore lives in the Baby Monster born at level i, and is equal to
δki (p). This would confirm that the critical plane we chose indeed appears in ∆k(p).

If, however, we reach the base without finding such a Baby Monster, then the
plane we chose cannot exist in ∆k(p). We can shorten the procedure of tracing each
plane back to the base by using previously established configuration possibilities
and proceeding inductively.

While this is not an algorithm in the strictest sense, it can theoretically determine
which configurations are possible above any given point. As one might suspect, this
can at times become extremely tedious, and would not be particularly enlightening
for the reader. For this reason, we will focus the remainder of the paper on a few
specific examples to demonstrate the efficacy of the method for determining spelling
rules, while skipping some of the routine verification that was required to complete
our results.

It is obvious that the vertical plane V appears above every point – it is just the
tangent space to the fiber. So in the method just described, we need only focus on
whether or not T1 and T2 exist (here, since we are concerned with the R3-tower –
one immediately sees how this method generalizes to the Rn-tower). Some of our
results here (those needed for the proof of Theorem 2) are summarized near the end
of the paper in Table 4. We will prove some of these relations here – the rest are
obtained by identical methods.

Example 2 (RV L1). We continue investigating the case begun in Example 1.
Suppose p3 ∈M3 has RVT code ω = RV L1.

Level 1. Begin with the global coframe {dx, dy, dz} for ∆0 = TR3. Our chart
will be centered at p1 = (p0, l0) ∈ M1 where p0 = (0, 0, 0). Introduce affine fiber
coordinates [dx : dy : dz] on F1(p1). Without loss of generality, assume dx|l0 6= 0.

Then [dx : dy : dz] = [1 : dy
dx : dz

dx ]. Now let

u1 =
dy

dx
, v1 =

dz

dx

so that

∆1(p1) = {dy − u1dx = 0, dz − v1dx = 0}.

Level 2. Since l1 ⊂ V (p1) = span{ ∂
∂u1

, ∂
∂v1
}, we know l1 = span{a ∂

∂u1
+ b ∂

∂v1
} with

a, b not both zero. Without loss of generality, assume a 6= 0. Then near this point
we have [dx : du1 : dv1] = [ dx

du1
: 1 : dv1

du1
]. This yields the affine coordinates

u2 =
dx

du1
, v2 =

dv1
du1

so that

∆2(p2) = {dy − u1dx = 0, dz − v1dx = 0, dx− u2du1 = 0, dv1 − v2du2 = 0}.

Level 3. Now l2 = L1(p3) = V (p2) ∩ T1(p3), so we want coordinate representations
of the V and T1 planes in ∆2(p2). According to Definition 3, V (p2) is given by
du1 = 0 and T1(p2) is given by du2 = 0, so we have du1|l2 = 0 and du2|l2 = 0. This
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Figure 3. Critical plane configuration over p3 ∈ RV L1. The left
side shows the birth of T1(p3) = δ12(p3) as the first prolongation
of the vertical plane at level 2. The right side shows the birth of
T2(p3) = δ21(p3) as the second prolongation of the vertical plane at
level 1. These two Baby Monsters meet in ∆3, and their intersec-
tion is the distinguished line L2(p3). See Example 2.

forces our coordinates near p3 to have the form [du1 : du2 : dv2] = [du1

dv2
: du2

dv2
: 1].

This yields the affine coordinates

u3 =
du1
dv2

, v3 =
du2
dv2

so that

∆3(p3) = {dy − u1dx = 0, dz − v1dx = 0, dx− u2du1 = 0,

dv1 − v2du2 = 0, du1 − u3dv2 = 0, du2 − v3dv2 = 0}.
This completes the first step of the process, as we have determined the local KR

coordinates around p3 and described the distribution ∆3(p3) in these coordinates.
Note that here p3 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

Appearance of T1. We now determine which of the critical planes T1 and T2 lie
above p3 in ∆3(p3), which is coframed1 by [dv2 : du3 : dv3]. First consider T1,
given by [a : 0 : b] with a 6= 0. We assume for now that it exists within some
Baby Monster, and we will either find this Baby Monster or derive a contradiction.
Since [dv2 : du3 : dv3] = [a : 0 : b] here with a 6= 0, we see that u3 is identically

1Technically, this coframes the projectivized space. But as we often identify ∆k(p) ⊆ TpMk

with P∆k(p) ⊆ Mk+1, this abuse of notation is convenient and should not cause confusion.
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Table 3. Summary of Example 2: RV L1

Level i Coordinates on M i P∆i−1 = Fi coordinates

0 (x, y, z) n/a

1 (x, y, z, u1, v1)

u1 = dy
dx , v1 = dz

dx

[dx : dy : dz]

2 (x, y, z, u1, v1, u2, v2)
u2 = dx

du1
, v2 = dv1

du1

[dx : du1 : dv1]

3 (x, y, z, u1, v1, u2, v3, u3, v3)
u3 = du1

dv2
, v3 = du2

dv2

[du1 : du2 : dv2]

Level i Critical planes in ∆i RVT code of pi

0 none n/a

1 V (p1) = δ01 p1 = (p0, l0) ∈ R
l0 ⊂ ∆0 = Tp0

M0

2 V (p2) = δ02 ,
T1(p2) = δ11

p2 = (p1, l1) ∈ RV
l1 ⊂ V (p1) ⊂ ∆1

3 V (p3) = δ03 ,
T1(p3) = δ12 ,
T2(p3) = δ21

p3 = (p2, l2) ∈ RV L1

l2 = L1(p2) ⊂ ∆2

zero on the Baby Monster, while v2 and v3 are not. Now, since ∆2 is coframed by
[du1 : du2 : dv2] near p2, and since u3 = du1

dv2
and v3 = du2

dv2
, this forces the Baby

Monster to have the form [du1 : du2 : dv2] = [0 : c : d]. Since this is the form of
a vertical plane, we can stop and conclude that T1(p3) exists, and lies inside the
Baby Monster born at level 2. That is, the plane T1(p3) = δ12 , which is the first
prolongation of the tangent space to the fiber F2(p2).

Appearance of T2. Next, we repeat this process for T2, given by [a : b : 0] with a 6= 0.
We assume for now that it exists within some Baby Monster, and we will either
find this Baby Monster or derive a contradiction. Since [dv2 : du3 : dv3] = [a : b : 0]
here with a 6= 0, we see that v3 is identically zero on the Baby Monster, while
v2 and u3 are not. Now, since ∆2 is coframed by [du1 : du2 : dv2] near p2, and
since u3 = du1

dv2
and v3 = du2

dv2
, this forces the Baby Monster to have the form

[du1 : du2 : dv2] = [c : 0 : d]. Note that unlike the previous case, this is not
vertical, so we must continue searching another level down. Since ∆1 is coframed
by [dx : du1 : dv1] near p1, and since u2 = dx

du1
and v2 = dv1

du1
, this forces the Baby

Monster to have the form [dx : du1 : dv1] = [0 : e : f ]. Since this is the form of
a vertical plane, we can stop and conclude that T2(p3) exists, and lies inside the
Baby Monster born at level 1. That is, the plane T2(p3) = δ21 , which is the second
prolongation of the tangent space to the fiber F1(p1).

Summary. We conclude that both planes T1 and T2 occur above a point with RVT
code ω = RV L1, so that both codes RV L1T1 and RV L1T2 are admissible and
realized (assuming temporarily that ω is admissible). Compare this result with
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Figure 4. Critical plane configuration over p4 ∈ RV L1T2. This
shows the birth of T2(p4) = δ31(p4) as the third prolongation of the
vertical plane at level 1. See Example 3.

Theorem 2 and Figure 2. Also see Figure 3 for an illustration of this situation. We
summarize the results of this example in Table 3.

Example 3 (RV L1T2). We continue the work from the previous example, and
consider the case of p4 ∈ M4 with RVT code RV L1T2. This is admissible by the
preceding computations, and indeed, all results from that example hold here. As
the general techniques were made explicit there, we omit some tiresome details here.

First, one finds affine coordinates u4 = du3

dv2
and v4 = dv3

dv2
for the fiber F4(p4).

Next, recall that ∆3(p3), is coframed by [dv2 : du3 : dv3], and T2(p3) locally satisfies
dv3 = 0, with dv2 non-vanishing and du3 not identically zero. This implies that
v4 = 0, but u4 is non-zero. (If u4(p4) were zero, then there would be no vertical
component, and l3 would lie in a regular direction instead of in T2.)

Second, we show that T2 does occur in ∆4(p4). This computation is nearly
identical to those presented in the previous example, so we omit it. One finds that
T2(p4) = δ31 .

Finally, we show that T1 cannot occur in ∆4(p4). If it did, it would have the form
[dv2 : du4 : dv4] = [a : 0 : b] with a 6= 0. But p4 = (p3, l3) with l3 ⊂ δ21 = T2(p3).
This implies du4|l3 = 0, so u4(p4) = 0, which contradicts the fact that u4 is non-zero
in a neighborhood of p4.

We have shown that the T2 critical plane occurs, but T1 does not, in ∆4(p4)
for p4 in the class RV L1T2. We conclude that the code RV L1T2 can be amended
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with letters R, V, T2, and L3, but not with T1, L1, or L2. Compare with Theorem
2, Figure 2, and the second row of Table 4. Also see Figure 4 for an illustration of
this situation.

4. Spelling rules. In this section we will outline the proof of Theorem 2 from the
Introduction, which we restate here.

Theorem 2 (Spelling Rules). In the Semple tower with base R3, there exists at
point p with RVT code ω if and only if the word ω satisfies:

1. Every word must begin with R
2. R must be followed by R or V
3. V and T1 must be followed by R, V, T1, or L1

4. T2 must be followed by R, V, T2, or L3

5. L1, L2, and L3 can be followed by any letter.

Let us begin with an overview of the method of proof. The first two rules are well
known and appear in [7] and [3]. Rule (3) can be checked by direct calculation; this
is tedious but straightforward and we omit the computation here. The same can be
said for the part of rule (5) concerning the letter L1. The technique is illustrated
by examples in [5] and the three examples above. For example, one finds that for
any point p ∈ λL1, the plane T1(p) is obtained by prolonging the vertical plane
from one level below. In other words, T1(p) = δ1k−1. Similarly, the plane T2(p) is
the prolongation of the T1 plane from one level below. This is independent of the
code λ.

To prove the remaining rules, (4) and most of (5), we proceed by induction on the
number of letters T2, L2, or L3 appearing in the code. This proof is more delicate.
Set S = {T2, L2, L3}. For the base case, we must prove that the spelling rules hold
for an RVT code ω containing only one letter α ∈ S. For the inductive step, we
must prove that the spelling rules hold for an arbitrary code ω, using the inductive
hypothesis that the rules hold for any code containing fewer letters α ∈ S. In both
steps, we assume without loss of generality that the letter α appears at the end of
the code in question.

Unfortunately – but perhaps unsurprisingly, given the examples above – this
method requires investigating a large number of specific cases, as well as a con-
siderable number of tedious calculations. We therefore spare the reader details of
all cases, and the lengthy but routine computations which are required to prove
each spelling rule rigorously. Instead, we will focus in detail on one particular rule:
the fourth. We hope that this approach will yield sufficient detail to introduce the
mechanics of the method to the reader, while sparing the reader dozens of pages
of nearly identical calculations. We chose these particular cases as they exhibit
generally typical behavior, but with a few of the subtleties which necessitate special
care and patience.
4.1. Base case. We assume rules (1) – (3) have been proved. Here we will pro-
vide details for rule (4); the remaining proofs are very similar. To this end, let ω
be an RVT code of length k, ending with the letter T2. We will show that codes
ωR,ωV, ωT2, and ωL3 do occur at level k + 1, while ωT1, ωL1, and ωL2 are impos-
sible. We prove this by induction on the number of letters α ∈ S = {T2, L2, L3}
appearing in ω.

We first prove the base case. Assume ω = λT2, where λ does not contain any
letter from S. We will show that rule (4) holds for this ω. We prove this by
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considering the potential letters preceding T2. By rules (2) and (3), T2 cannot be
preceded by R or V or T1. Since we have assumed that λ contains no letters from
S, we know T2 cannot be preceded by T2, L2, or L3. We therefore consider the only
remaining possibility: T2 is preceded by L1. Note that for convenience we will use
λ to denote any sub-code of ω, regardless of its length.

So we proceed assuming our code has the form ω = λL1T2, where λ contains no
elements from S. Thus, the predecessor of L1 can only be V, T1, or L1. We have
three possible cases.

Case 1: ω = λV Tm
1 L1T2,m ≥ 0. Assume our code has length k and is of the form

ω = λV Tm
1 L1T2 with m ≥ 0. If m = 0, then V precedes L1; if m > 1, then T1 does.

The third possibility, where L1 precedes L1, is treated as a separate case below.
In fact, we can assume without loss of generality that ω = RV Tm

1 L1T2. This
is valid because the plane T2(pk) is the (possibly multi-step) prolongation of some

vertical plane from a lower level. That is, T2(pk) = δji for some Baby Monster, and
this subtower could not have been born at a level below the last letter V in the
RVT code.

Now consider ω = RV Tm
1 L1T2. We have k = m + 4. We wish to show that

the spelling rules hold for ω. This is to show that the codes ωα are realized for
α = R, V, T2, L3, but are impossible for α = T1, L1, L2. Now there are regular and
vertical directions in each distribution plane, so it is clear that α = R or V are
possible. Recall from Definition 3 that L1 = V ∩T1, L2 = T1∩T2, and L3 = V ∩T2.
It is therefore sufficient to simply show that α = T2 is possible, while α = T1 is not.

The proof here is nearly identical to that provided in Example 3. In fact, that
example gives precisely the case where m = 0. Recall that in that case, T1 could not
appear and T2(p4) = δ31 . For m > 1, we easily verify that, again T1 cannot appear,
and T2(pm+4) = δm+3

1 . The key observation is the following. The vertical plane
V (p1) is coframed by [dx : du1 : dv1] = [a : b : 0] with a 6= 0. The prolongation of
this plane is T1(p2) = δ11 , which is coframed by [du1 : du2 : dv2] = [a : 0 : b] with
a 6= 0. For m > 1, we continue this process and find that the mth prolongation of
V (p1) is T1(pm+1) = δm1 , which is coframed by [du1 : dum+1 : dvm+1] = [a : 0 : b]
with a 6= 0. The rest of the steps are the same as in Example 3.

Case 2: ω = λL1T
m
1 L1T2,m ≥ 1. This case is nearly identical to the previous.

Here, one finds again that the vertical plane in ∆k−m−3 prolongs m + 3 times to
give the plane T2(pk).

Case 3: ω = λL1L1T2. The method here is the same as in Case 1, so we will omit
some of the readily checked details. Again suppose the length of ω is k. Then
∆k is coframed by [dfk : duk : dvk], and T2(pk) would have the form [dfk : duk :
dvk] = [a : b : 0] with a 6= 0 and dfk = dvk−2. Its projection in ∆k−1 will have
the form [dfk−1 : duk−1 : dvk−1] = [a : b : 0] with a 6= 0 and dfk−1 = dvk−2.
Its projection in ∆k−2 will have the form [dfk−2 : duk−2 : dvk−2] = [a : 0 : b]
with a 6= 0 and dfk−2 = dvk−3. Finally, its projection in ∆k−3 will have the form
[dfk−3 : duk−3 : dvk−3] = [0 : a : b] with a 6= 0. At this point, we can see that this
is the vertical plane V (pk−3), so we find that T2(pk) does indeed exist in ∆k, and
that it is equal to δ3k−3.

A computation similar to this one and those found in Example 3 shows that
T1(pk) cannot exist. In short, one repeats this computation beginning with T1(pk)
of the form [dfk : duk : dvk] = [a : 0 : b] with a 6= 0, and at some point a contradiction
is obtained in that some coordinate is forced to be both zero and nonzero.
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Table 4. Base Cases of Inductive Proof

RVT code of pk ∈Mk T1(pk) T2(pk)

λV Tm
1 L1T2 for m ≥ 0 None δm+3

k−m−3(pk)

λL1T
m
1 L1T2 for m ≥ 1 None δm+3

k−m−3(pk)

λL1L1T2 None δ3k−3(pk)

λV Tm
1 L1L2 for m ≥ 0 δ2k−2(pk) δm+3

k−m−3(pk)

λL1T
m
1 L1L2 for m ≥ 1 δ2k−2(pk) δm+3

k−m−3(pk)

λL1L1L2 δ2k−2(pk) δ3k−3(pk)

λV Tm
1 L1L3 for m ≥ 0 δ1k−1(pk) δm+3

k−m−3(pk)

λL1T
m
1 L1L3 for m ≥ 1 δ1k−1(pk) δm+3

k−m−3(pk)

λL1L1L3 δ1k−1(pk) δ3k−3(pk)

This establishes the base case for the proof of rule (4) by induction. We showed
that rule (4) holds for any RVT code containing a single member of S (which, in
the context of rule (4), must naturally be the letter T2.) These three cases comprise
the top three rows in Table 4. The remaining cases are displayed as the lower six
rows in Table 4; their proofs are similar.

4.2. Inductive step. We now take ω to be an arbitrary RVT code of length k.
We assume that ω ends with some letter from S, and we will show that the spelling
rules hold for ω. Our inductive hypothesis states that the spelling rules hold for
any code which contains fewer letters from S than ω does.

As above, we will focus on rule (4), so our code should end with the letter T2.
So we have ω = λT2 and our inductive hypothesis allows the assumption that λ
satisfies the spelling rules. We wish to show that, at level k + 1, the codes ωα are
realized for α = R, V, T2, L3, but are impossible for α = T1, L1, L2. Now there are
regular and vertical directions in each distribution plane, so it is clear that α = R
or V are possible. Recall from Definition 3 that L1 = V ∩ T1, L2 = T1 ∩ T2, and
L3 = V ∩ T2. It is therefore sufficient to simply show that α = T2 is possible, while
α = T1 is not.

Now since λ clearly has (exactly one) fewer letters from S than ω does, it must
obey the spelling rules by assumption. So T2 must be preceded by either T2, L1, L2,
or L3. There are four cases here, but we will give details for just the first and
second. The other two are nearly identical.

Case 1: ω = λT2T2. Suppose pk ∈ Mk has RVT code ω = λT2T2. From the
discussion above, it suffices to prove that T2 appears in ∆k, while T1 does not.
Now the distribution ∆k is coframed by [dfk : duk : dvk]. Two levels down, ∆k−2

is coframed by [dfk−2 : duk−2 : dvk−2], but since pk−1 ∈ λT2, it must have the
form pk−1 = (pk−2, lk−2) with lk−2 ⊆ T2(pk−2). We must therefore have T2(pk−2)
coframed by

[dfk−2 : duk−2 : dvk−2] =

[
1 :

duk−2
dfk−2

:
dvk−2
dfk−2

]
= [1 : uk−1 : vk−1]
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where vk−1 = 0 and uk−1 is not identically zero. Moreover, we see that dfk−1 =
dfk−2.

Since pk ∈ λT2T2, the same argument shows that T2(pk−1) is coframed by

[dfk−2 : duk−1 : dvk−1] =

[
1 :

duk−1
dfk−2

:
dvk−1
dfk−2

]
= [1 : uk : vk]

where vk = 0 and uk is not identically zero. Moreover, we see that dfk = dfk−1 =
dfk−2.

Now as an ansatz, suppose T2(pk) indeed appears in ∆k. Then it would have the
form [dfk−2 : duk : dvk] = [a : b : 0] with a 6= 0. Its projection one level down would
have the form [dfk−2 : duk−1 : dvk−1] = [a : b : 0] with a 6= 0. We recognize this as
T2(pk−1), which we know exists in ∆k−1. Therefore T2(pk) indeed exists as it is the
prolongation of T2(pk−1), and our ansatz is justified.

Finally, assume for sake of contradiction that T1(pk) appears in ∆k. It would
have the form [dfk−2 : duk : dvk] = [a : 0 : b] with a 6= 0. Its projection one
level down would have the form [dfk−2 : duk−1 : dvk−1] = [a : 0 : b] with a 6= 0.
This forces duk−1 = 0. But we saw above that a local fiber coordinate at pk−1
is uk = duk−1

dfk−2
, and uk is not identically zero. This contradiction disproves the

existence of T1(pk) in ∆k.

Case 2: ω = λL1T2. Suppose pk ∈ Mk has RVT code ω = λL1T2. From the
discussion above, it suffices to prove that T2 appears in ∆k, while T1 does not.
Now the distribution ∆k is coframed by [dfk : duk : dvk]. Two levels down, ∆k−2

is coframed by [dfk−2 : duk−2 : dvk−2], but since pk−1 ∈ λL1, it must have the
form pk−1 = (pk−2, lk−2) with lk−2 = L1(pk−2). We must therefore have L2(pk−2)
coframed by

[dfk−2 : duk−2 : dvk−2] =

[
dfk−2
dvk−2

:
duk−2
dvk−2

: 1

]
= [uk−1 : vk−1 : 1].

Moreover, we see that dfk−1 = dvk−2.
Since pk ∈ λT2T2, the we can similarly see that T2(pk−1) is coframed by

[dvk−2 : duk−1 : dvk−1] =

[
1 :

duk−1
dvk−2

:
dvk−1
dvk−2

]
= [1 : uk : vk]

where vk = 0 and uk is not identically zero. Moreover, we see that dfk = dvk−2.
Now as an ansatz, suppose T2(pk) indeed appears in ∆k. Then it would have

the form [dvk−2 : duk : dvk] = [a : b : 0] with a 6= 0. Its projection one level down
would have the form [dvk−2 : duk−1 : dvk−1] = [a : b : 0] with a 6= 0. We recognize
this as T2(pk−1), which we know exists in ∆k−1. Therefore T2(pk) indeed exists as
it is the prolongation of T2(pk−1), and our ansatz is justified.

Finally, assume for sake of contradiction that T1(pk) appears in ∆k. It would
have the form [dvk−2 : duk : dvk] = [a : 0 : b] with a 6= 0. Its projection one
level down would have the form [dvk−2 : duk−1 : dvk−1] = [a : 0 : b] with a 6= 0.
This forces duk−1 = 0. But we saw above that a local fiber coordinate at pk−1
is uk = duk−1

dvk−2
, and uk is not identically zero. This contradiction disproves the

existence of T1(pk) in ∆k.
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